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SUMMARY 
This paper deals with the free non-symmetric vibration of deep spherical sandwich shells. The sandwich shell considered 
herein consists of three layers. A variational technique is utilized to obtain the equations of motion as well as the 
appropriate boundary conditions. The effects of transverse shear deformation and rotary inertia have been included in 
this analysis. 

New deformation functions have been introduced which considerably simplify the system of differential equations. 
The final solution is obtained in terms of Legendre functions. 

Numerical computations have been performed for the symmetric case and graphs are included to show the frequency 
variation with ~b and h/R for various modes. 

1. Introduction 

In the past, free vibration of shallow and deep shells has been studied quite extensively by 
many authors [1, 2, 3]. On the contrary, little work has been published on the vibration of 
spherical sandwich shells [4, 5, 6]. The work by Koplik and Yu [4] deals with the axisymmetric 
vibrations of spherical sandwich caps using associated variational equations of  motion. 
Reference [5] deals with the transverse vibrations of a three layered shallow spherical sandwich 
shell. The problem of the axisymmetric vibration of deep spherical sandwich shells was con- 
sidered by the authors, and has been reported earlier [6]. In reference [6] the face sheets have 
been taken as membranes.  

In this paper, the normal  mode of the non-symmetric vibration of a deep sandwich spherical 
shell is studied. The sandwich shell consists of three layers. The facings are assumed to be made 
of isotropic elastic material and the core is assumed to be a low density and low strength 
material. The formulation of the problem is based on the linear strain-displacement relation- 
ship and a variational principle [7] is utilized to obtain the stress-displacement relationships, 
the equations of motion as well as the appropriate  boundary  conditions. The effects of trans- 
verse shear deformation and rotary inertia have been included in this analysis. The core is 
assumed to be incompressible in the radial direction and its face parallel stresses are neglected. 
The flexural rigidity of the facings are also taken into account. 

The system of differential equations is reduced to a considerably simplified form by introduc- 
ing new variables which are functions of the" displacement components.  These arbitrary 
functions are expressed in terms of associated Legendre functions as described elsewhere in 
this paper. The elastic and geometric parameters  have been expressed in non-dimensional form. 
The numerical values of the nondimensionalized frequency parameter  f2 for the clamped edge 
sandwich shells are presented. The graphs show the effects of  flexural rigidity of  the face sheets, 
opening angle q~o and the geometric and elastic properties of the core on the frequency. 

2. Notations and fundamental relationships 

The displacement components  at any arbitrary point of the i-th layer, u'i, v'i and w' i in 0, ~b, and r 
directions respectively are assumed to be 

u'i = u i+  Zi f lo i ,  v'i = v i+  Zifl4,i,  w', = w i . (2.1) 
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Here, u~, v i and w i are the mid-surface displacement components in the i-th layer; flo and fl, are 
changes of slope of the normal to the middle surface from where Z~ is measured in the outward 
radial direction. The strain-components in the spherical coordinate system are written as 

(I + z j g i ) e ' ~ i  = e~, + Z ,  k~,,, (1 + Zi/R,)e'o, = eoi + Z~ko~, 

( I+Z , /R , )2 'o , ,  = 7o,i+Z,koeei ,  ( l + Z j R i ) 7 ' r , i  = 7r , i ,  ( l+Z jR i )? ' ro l  = 3%1. (2.2) 

In eqs. (2,2), R i is the radius of the middle surface of the layer and e~i, e0i, YaWl, 2'.,i, 7'r,i are 
strains at any arbitrary point. The mid-surface strains e,i, goi, Yor Yr,i, Troi are expressed in 
terms of mid-surface displacements as follows 

R i g . , i  ~- u i , , - l - w i  , Rigoi = cosec c~ui, o + c o t  ~l - ) i - { -Wi  , 

R~7oe,~ = ui ,ee-cot  qSu~+cosec ~bvi, o, R i Y r r  = w i , r  Ri f ir  

R i Y r O  i = c o s e c  4 9 W , o - u i +  Rifloi , Rikr  f l & ~ ,  

Ri  koi = cosec (a floi, o + cot  (a fl eei , Ri ko, i = f l o i , , -  cot  4~ floi + cosec 49fl,i, o . (2.3) 

In the above equations, the notation w~.0 stands for the partial derivative of w~ with respect to 0. 
The normal stresses a~i, aal and shear stresses z'roi, z'r,i, z'o,i are expressed in terms of the stress 

resultants N,i ,  Noi, No,i, moment resultants M,i ,  Moi, Mo,i ,  and shear stress resultants Q,i and 
Qoi in the following manner [7] 

(1 + Zi/Ri)a'~i = N, i /h i  + Z iM4,J l i ,  

(1 + Zi/Ri)z'oeel = No,i/hi + Z i U o , i / I i ,  

(1 + Zi/Ri)z'~, , = -} { 1 - (2ZJh , )  2} Q4,jh, - 

- {Pgi (1 + hJ2Ri )  [1 - 2 ( 2 Z j h i ) -  3 ( 2 Z j h i )  2] + 
+ P~i (1 - hi/2R~) [1 + 2 ( 2 Z j h i ) -  3 (2Zi/h~) 2] }/4. (2.4) 

where h i is the thickness of the i-th layer and the symbol I i = h~/12. The quantities P~i, P4,1, P~, P~ 
are given as 

Z'r*i]Z,=h,/2 = P;i, Z',.,ilZ,=-h,/a = Pr etc. (2.5) 

The equations for a;~ and "C;o~ can be obtained by replacing 0 for q5 in eqs. (2.4)a and (2.4)c. 

3. Equations for sandwich spherical shells 

The spherical sandwich shell considered in this investigation consists of three layers. The two 
face layers are made of isotropic elastic material. The thickness of each face sheet is h and its 
modulus of elasticity and Poisson's ratio are E and v respectively. The change in slopes of the 

Focin 9 2 v~, vt 

Figure 1. Spherical sandwich shell element with the distribution of deformation. 
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normals to the middle surfaces are assumed to be equal in both face sheets, and are given by 
/34, and/3o in the ~b and 0 directions respectively. The thick layer between the face sheets is a low 
density and low strength material. The compression or stretching of the core material in the 
radial direction is assumed to be negligible. The face parallel stresses in the core are negligible 
as compared to those in the face sheets. Thus, 

o'4,--- a0 = z4,0 = 0.  (3.1) 

The displacement components are taken in the following f o r m  

u = a+ ( a -  hflo/2)Z/c, v = f +  ( v -  hflo/2)Z/c,  (3.2) 

where 2c is the thickness of the core, and the displacement components g, f, ~, v are given by 

i f= (u~+u2)/2, g = (v~+v2)/2, ~ = (u~-u2) /2 ,  v = ( v t - v 2 ) / 2 .  (3.3) 

For convenience, the stress resultants and moment resultants are defined as below 

Ndp : (Nckl-'}-g4,2)/2 , N4, : (N491-N4,2) /2 ,  N o =  (gol-l-  go2) /2  , 

No = (No~-No2)/2,  Mo = (M~ + M4,2)/2, M-4,= (Me~-M4,2)/2,  etc. (3.4) 

With the introduction of the strains, stress-resultants and displacements as given in eqs. (2.2), 
(2.4), (3.2)-(3.4), the total energy in the shell element can be written as 

S I :  

S 2 = 

S 3 = 

S 4 : 

$5 : 

[ 2R ( ~  ge + ~ g4, + lYogo + Nogo + No, 7o4, + No4, %4, + 04, ~,, +-Q~ Tr4, 
+ Qo~ro+ Q--o%o+fflek,+ffIoko+ffio4,ko4,)+ 

+ 2s(N4,-ge + N4,ge + Nogo + Nogo + No4, 7o4, + Noo ~7oo + Q4, 7r4, + Q--~ ~4, + 

+ Oo%o+-Qo#o+M-4,k~+Moko+Mo~ko4,)+ 

+ p h R  2 { s l ( a 2 , +  e 2 +w~,)+s2(a~,+r~ + 2s3(ff , a  , +  g ,~ ,)+ 

+ 2s~ R (a,/30,, + v ,  & , )  + 2s~ R ( . , / 3o .  + ~.,/34,.,) + s ~ R 2 (~g., + ~,,) } - 

{& + 12 (1 + v)(0g + 002 + ~ .  + ~o) /5  } R: (1 + s:/R:)/eh- 
{A2 + 12(1 + v)(04, Q~ + (~o Q-0)/5 } 4 s R / E h -  A3 R 2 (1 + s2 /R2) /EI -  

A 4 4Rs/eI  + R (Q4,~ 7~4,~ + Qo~ 7~o~) - (Og~ + 02)  3R2/10G~ c - 

{ " ra (1  + sc/R2)(O4,P4, +-Q4,P4, + Qoffo + QoPo)- 

- r a (siR + c/R)(g4~ P4, + -Qo r2o + 04, iJ4~ + Qo p o ) -  (Q4,~ P4) + Qo~ fro)-  
- (Q4,~p4, + Qo~Po)c/R + [2ra h (1 + c2/R2)/3 + c (1 + ~-c2/R2)] ( N  + ff2o) + 

+ [2ra h (1 + c 2 / Re)/3 + c (~ + c2/R2)] (p~ + p~) + (~4,p4, + Po Po)(rG + 2rh) 8ch/3R} ] sin ~9 ddp dO, 
(3.5) 

where 

1 + s2/R 2 + h2/12R 2 -F r e r h (1 + c2/3R2), 

1 q- s2/R 2 -~ h2/12R 2 + rprh(1 + 3c2/5R2)/3 , 

2s/R + 2rp r h c/3R,  

(1 - 2r o r 2) h2/6R 2 , 

{sh2/R a - r orh (1 + 3c2/5R 2) h /R}/6 ,  

s 6 = {1 + s2/R 2 + 3h2/20R 2 + rprh(1 + 3c2/5R2)} h2/12R 2 , 

r o = p~/p, rh = c/h, r~ = GJG.  (i) 

G and v are the modulus of rigidity and Poisson's ratio of the face sheet; p is a mass density of 
face sheet; G~ and p~ are modulus of rigidity and mass density of the core material and t re- 
presents time. 

Also, 
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go = 6. ,  + w, go = ~.* , go= cosec r  , t ~ + w ,  

go = cosec 05a , + c o t  05v, ~7or = ~7 , + c o t  05~7+cosec 05z7.0 , 

%, = a , , - c o t  05aq-cosec 05~,o, ~7,, = w , o - g + R f i ,  , y , ,  = - V + s f l o ,  

37~o = cosec ~ w  o - ~ R f l o ,  Y.o = - ~ + S f l o ,  ?~4,~ = w ,4 , -g+vR/c - f l e~Rh /2c ,  

7.Oc = cosec r w,o - u+ ~R/c - floRh/2c , 
H1 ~ 2 ~T2 = N r  +2(1 + v ) ( ~ I g + N ~ , ) - 2 v ( f l ~ N o + N s ,  No) 

A z = l ~ , N o § 2 4 7 1 6 2 2 4 7  No), 
A 3  ~ ~2  - - 2  m, + m,  + ~t~ + ~g +2(1 + v)(~l~, + ~2o,)-Zv(~l~1o+ m~mo), 
A~ = )~,Ms,+ ~r0M0 + 2(1 +v)Mos, Mo, -v (Ms~Mo+M~Mo ) . (3.6) 

Considering the variation of displacement components and stress and moment resultants 
f7, 9], the constitutive equations for the sandwich shell and the proper boundary conditions 
are obtained. These differential equations of motion are given by 

cosec *N0,0+N0~.r cot O~Io~+O~o+QojZ+(cosec 05N0,o+ No, . ,+  2 cot ONo,+Qo)s/R = 

p h R ( s  I ~ + s 3 ~ +  ss  Rfio),zt  , 

N6.4~ + cosec 4) No,., + cot r ( / ~ -  No) + Q4 + Qs, c/2 + 

+ [N-0, , + cosec 05 No6,o + cot 05 (N-, - No)+ Q,] s/R = 

= phR (s 1 v+ $3 ~ §  S4 R f l , ) , . ,  

cosec 05 No, o + No~,4 + 2 cot 05 No, + Qo-  Qo~R/2c + 

+ (cosec 05 No, o + PToo,, + 2 cot 05 No+ + (~o) siR = 

= phR (Sa ~i§ S 2 a §  S 5 R f lo  ) , t t ,  

No, 4 + cosec 05 N0r + cot 05 (N, - No) + Q o -  Q~ R/2c + 

+ IN,, , + cosec 05 Nos,,, + cot 05 (N o -  No)+ 0 ,3  = 

= p h R ( s  3 g +  s 2 g +  s5 Rfl~),,t, 

(OO + Q,J2) ,r  + cosec O'(Qo + QoJ 2) ,o + cot 05 (Qo + Qs, J 2) - 

- (b~r +No)+ [~r  cosec 05Qo, o+COt 05Q~-(No+ No)] s/R = 

= phRs~ w . ,  

cosec r )~ro, o + M0,, 4 + 2 cot 05 Mos, - R (0_.o + -Qo s/R) + Qo~ hR/4c + 

+ [cosec 05)~o,o + 2~o~, o + 2 cot 49 ~do, - R (Qo + Q, s/R) ] siR = 

= phR 2 (s~fi Jr s 5 if+ S 6 Nil,  ) , ' , ,  

2(/~,,~ + cosec 05-h~o4,o + cot 05 (]1,"/4,-- ]~o)-- R(O6+ Qos/R)+ Qo~hR/4c+ 

+ [M*, o + cosec 05 Mor + cot r (Mo - Mo) -  R (-Q, + O, s/R)] siR = 

= phR 2 (s~ f +  s 5 ~+ s 6 R rio),." (3.7) 

After application of the variation technique, the following stress-strain equations in addition 
to eqs. (3.7) are obtained 

N,+N-os /R = K(go+Vgo)/R,  Ns,+FIr = K(g~+V~o)/R,  

Nos, + Nog, s / R =  Gh~o,/R , No, + Noo siR = GhYor , 

)~I~ + M4~ siR = D (kr + vko)/R , ~Io, + Boo siR = D (1 - v)ko4,/2R, 

Qr + -Qr siR = 5 Gh (r 1 ~r + r3 ?r4,c)/g , -Qo + Qr siR = ~Ghr 2 yro/R , 

Qoc = 5Gh(r3 Yr4 + r4Yrer . (3.8) 
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The other  six relationships for No, No, Mo, Qo, Qo and Qo~, not  appearing in eqs: (3.8), can" 
be written by interchanging q5 and 0. While obtaining the shear stress resultants, Qr Q6, Qee~ 
c~c., the shear stresses at the interfaces of  the core and the face sheets are eliminated. The quan- 
tities rt,  re, ..., etc. are given by the following equat ions:  

r 1 = 1 + rG/(15r ~ + 20rh), r 2 = 1 + rG/(15r a + 40rh), 

r3 = 2rG rh/(15rG + 20rh), r4 = 2rG rh (15ra + 24rh)/(15r G + 20rh). (iX) 

4. Solution of the differential equations 

For  normal  modes  of vibrat ion the displacement components  1i, a, g, ~, w, f14 and fi0 are ex- 
pressed as 

(if, ~, ~, v, w, Rflee, Rflo) = (U, U, V, V ,  W, X,  Y) exp( je) t ) ,  (4.1) 

where co is the circular frequency of the sandwich shell and j =  ( - 1 )  ~. 
At this stage, a set of new funct ions /4 ,  H_ }, if,/~ are introduced,  which are defined by 

/~ = 17,~+cot q5 17 +cosec  qSU,0, H = V , ~ + c o t  qSV+cosec  ~bU,0, 

)~ = [7 o + c o t  q5 U - c o s e c  q517 0, )~ = f f , 4 + c o t  ~b U - c o s e c  ~bg-,0, 

ff = X , , + c o t  ~bX+cosec  q5 Y,o, /~ = Y ~,+cot q5 Y - c o s e c  qSXo. (iii) 

As will be seen later, the use of these special functions considerably simplifies the differential 
equations of motion.  Replacing eqs. (3.8), (4.1), (iii) together  with the nondimensional  frequency 
parameter  f2 = (pco z Re~E) ~ in eqs. (3.7), results in the following system of equat ions  

A 1 / t , o -  cosec  ff)Z,o-l-A2 V + A3 V + A 4 X  + A 5 W,4, = O, 

A 1 cosec qS/~ 0+)~,~+A e U + A  3 U-q-A 4 Y+A5 cosec q5 W o = O, 

A 1 R , , ~ - c o s e c  ~},o+ A3 V + A6 V + ATX + As W,(o= O, 

A 1 cosec ~b/4,0+ } ,~+A3  U -l-A6 U--l- A7 Yq- A8 cosec ~ W,o = 0 ,  

B 1 / ~ + B e H - + B 3 f f + B 4 V  e W + B  5 W =  0 ,  

A1 i f , o - c o s e c  (g ff,o + B6 V + B 1 V  + Bs X + B9 W,4~ = O, 

A 1 cosec (gff,o+ff,4,WB6[J+B7U-+B s Y + B  9 cosec (aW,o = 0 .  (4.2) 

In the above equat ions V 2 is Laplace opera tor  in spherical coordinates  

V2 = r  .~_ cot q~ ~/0q5 + cosec ~b 6~2/(~02 , (iv) 

and the quantit ies A1, A2, . . . ,  B 9 are 

A , = Z / ( 1 - v ) ,  A 2 = 2 + 2 ~ e z s l ( l + v ) - 5 B 4 / 6 ,  

A3 -- 2fa2 s3(1 +v)+5Be/6, A4 = 2faes4(1 + v)+ 5B3/6,  

A s = A 1 (1 + v) + 5B4/6,  A 6 = 2 + 2f22 s e (1 + v ) -  65-(re + r4 R2/c2), 

a7  = 2f22 s s (1 + v) + { {r 2 s / R -  (r 3 - r4/Zrh)R/c}, 

A s = - ( r a + r 4 ) 5 R / 6 c ,  B, = - (17  + 7v) /5(1-v) ,  

B 2 = (r 3 q- r4)R/c , B3 = r 1 + r3 - (r 3 + r4)/Zrh, 

B 4 = r 1 + 2 r 3 + r 4 ,  B s =  { f22s l - -2 / (1-v)} !~( l  +v) ,  

B 6 = [10B 3 + 24(1 + v) ~"~ 2 s4] Re/h 2 , 
= 2 2 B 7 [24(1+v)~22s5-  lO{(r3-r,~/2rh)R/c-res/R}]R /h , 

B s = [24(1 + v)O e s 6 - 10 {rl - ra/rh + r,~/4reh + r2 s2/R e} ] Re/h e , 

B 9 = - 10B 3Re/h 2 . (v) 
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Equations (4.2) can be further simplified to a more suitable form, from where the solution can 
be directly obtained: 

(A1VZ + A2)H + A3H+ AaI~ + As VZW= O, 

A3H +(A1V2 + A6)H+ ATF + As V2 W = O , 

BI~I + B:H§  B3F +(B4 V2 + Bs)W = O, 

B6H-k-BTH+(A1V2+Bs)FwB9 V2 W ----- 0,  (4.3) 
and 

(V2 + Az);+ A3-z+ A4 p = O, 

A3z +(V2 + A6)z + ATF = O, 

B6z+Bv;+(VZ+Bs)r  = O. (4.4) 

The general solution ofeqs. (4.3) and (4.4) is expressed in terms of associated Legendre functions 
of the first and second kinds. 

/~= 

and 

~ 4 ~ 4 
E /~m COS mO H E ~Ym , = Ha cos mO, 

m=O a = l  m=O a = l  

f~" cos toO, W = ~ w"2 cos toO, 
m = 0  a = l  m = 0  a = l  

3 

m=O f l= l  

3 2 z  
m=O f l = l  

where 

if1 m = a'~p~ (cos qb)+ B~ Q~ (cos ~b), 

27 = M"~P,~ (cos ~b)+ N 7 Q,5 (cos r  

3 _ 

z7 cos too, E z~' cos too, 
m=O ,6=1 

F 7 COS toO, 

(4.5) 

(4.6) 

- -  m m m m H~ = C~ p,, (cos ~b)+D~ Q~ (cos q~), (vi) 

etc. 

5. Boundary conditions 

In order to have the complete formulation of the problem, boundary conditions are to be 
introduced. A generalized system of boundary conditions is obtained from the variation of the 
energy equation for the following quantities: 

N~+N-~,s/R or V,  N,+Nos/R or V ,  

flo~+No, s/R or U,  Noo+Noos/R or U-, 

~1~ + ~.~s/R or ~o, ~to~ + ~o~s/R or /~0, 
Qo+-Qos/R+Qcc/2 or w. (5.1) 

However, in the problem of vibration of a shell fixed at the boundary ~b = r relevant boundary 
conditions which are only in terms of displacements are prescribed. 

6. Numerical results and discussion 

This section describes the results for the case of axisymmetric vibration of a deep sandwich 
spherical shell. For this case the variables involved in the analysis become independent of the 
parameter 0 and as such the equations are simplified. Further, the displacement components 
U, U and Y which are defined by eq. (4.1) are zero. It is also seen that the system of equations 
(4.4) is identically satisfied. 

The values of the associated Legendre functions P~, (cos r for real and complex orders v~ 
are not available in the literature. The authors have generated the values of the Legendre 
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tions P~ (cos q~) and their derivatives with respect to q5 for real and complex orders v~. 
~e tables have been compiled and reported earlier [8]. It can be seen that for the axisym- 
dc vibration the form of the Legendre functions used in the general solution given in eqs. 
is further simplified as m = 0. The coefficients of the Legendre functions Q~= (cos ~b) of the 

nd  kind are zero due to the finiteness condition on the solution at q5 = 0. 
he homogenous boundary conditions at the clamped edge q5 = q5 0 are written as 

V = 0 ,  V = 0 ,  W = 0 ,  X = 0 .  (6.1) 

frequency equation obtained by using eq. (6.1) is a transcendental equation. The roots of 
equation are generated by an iteration process and all computations were performed on an 

360. This technique has been used earlier [6] to generate other results. The numerical 
tes of the frequency parameter f2 for the clamped sandwich spherical shell have been com- 
~d for the following non-dimensionalized material properties: 

rp= 1/26.7, c/R = 0.02, r G= 1/1680, 

�9 Poisson's ratio of the face sheet v = 0.3. The above properties are valid assumptions for 
lls with aluminum face sheets and aluminum honeycomb as the core material. 
"he frequency co in its non-dimensionalized form, which is obtained by dividing co by the 
:or R- a (E/p)+, has been plotted as a function ofh/R in Figures 2-4. These graphs are shown 
various ~b values varying from 60 ~ to 120 ~ at intervals of 30 ~ . The frequency ~2, as expected, 
teases with the increase in h/R for all values of angles q5 o as well as the modes. The nature 
hese curves agrees with the trend of variation of (2 for homogeneous shells reported earlier 
he literature [ 1]. It is seen that as the angle ~b o increases the frequency f2 gradually goes down. 
is is partly explained by the predominance of the bending effects in the face sheets for lower 
ues of opening angles q~0. Another effect to be noticed from the curves is the sharp sensitivity 

to the ratio h/R, which is a property of the face sheets, for lower values of q5 o. 
['he frequency parameter ~ has also been calculated for the pinned edge conditions at 
: 4~o- These conditions are 

~)-7 

rp = 1/26.7 

r e = 1/1680 

c l R  = 1150 

. . . .  FACE SHEET AS A MEMBRANE 

- -  FACE SHEET AS A ~  

o,, 2!5 5'.o 7'.s ~o.o 
( h / R )  x l O  3 

;ure 2. Frequency variation with h/R for clamped edge condition at q50=60 ~ for three modes. 
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1"3 

a2 

I . I  

0 -9  

0 -7  

rp = 1/26.7 

rs = 1/1680 

c /R  = 1/50 

. . . .  FACE SHEET AS A MEMBRANE 

FACE SHEET AS A FLEXURAL MEMBER 

0"5 I I I 
2 -5  5 0 7 -5  I0 "0  

(h/R) xlO 3 

Figure 3. Frequency variation with h/R for clamped edge condition at ~b0=90 ~ for three modes. 

= 0 ,  V =  O, W = O , Me  + M4~s/R = O . (6.2) 

The detailed numerical  results for this part icular  case are not  presented in this paper. 
The frequency values for these two cases are closer to each other  for thin face sheets. As the 

face sheet grows thicker i.e., for larger values of h/R,  the discrepancy between the ~ values as 
generated by the use of  condit ions (6.1) and (6.2) is more  pronounced.  This behavior  is well 

1,3 

,0o9 

rp =1/26 ,7  

r 0 = 1/16BO 

c /R  = 1 /50  

. . . .  FACE SHEET AS A MEMBRANE 

- -  FACE SHEET AS A FLEXURAL MEMBER 

0"7 

0 ' 5  

2"5 5"0 7.5 IO,O 

(h/R) x 10 3 

FigUre 4. Frequency variation with h/R for clamped edge condition at q~o = 120~ for three modes. 
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explained from the fact that  for thinner face sheets, which correspond to lower h/R values, the 
membrane  action is more  predominant  as compared  to the bending action. 

In order to study the effects of  bending in the face sheets, extensive computa t ions  were 
performed for the two cases of bending and membrane  face sheets. The results for sandwich 
shells with membrane  face sheets for 4)o = 60 ~ 90 ~ and 120 ~ shown by broken lines in Figs. 2, 
3 and 4, are obtained by making a proper  simplification of  the general frequency equat ion 
presented in this paper. By introducing necessary changes in the material  and .geometric 
properties of the sandwich shell discussed in reference [6] and carrying out  the computat ions ,  
it was found that the results obtained here for the membrane  face sheet case are in close agree- 
ment  with those in [6].  It is observed that  the error  involved in the frequence f2 by the neglect of 
the bending behavior of the face sheet increased as ~b o decreases. Further,  this error increases 
for higher modes. The m a x i m um  error occurs for the third mode  in the case of  4% = 60 ~ and its 
magni tude  is 9.3 ~ .  This error  goes down to 1.6 ~ for ~b o = 120 ~ F r o m  the s tudy of  the graphs 
presented here, it can be concluded that for shells with lower q50, the effect of  curvature  de- 
creases for higher modes. This is in agreement  with one of  the observat ions made  in [4] for 
shallow shells. N o  computa t ions  are performed for the case with no ro tary  inertia in the core. 
It is, however, expected that rotary inertia will play a significant role for higher modes. 
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